本文作者:KTV免费预定

二次型的秩怎么求(二次型的秩为2意味着什么)

KTV免费预定 2022年12月18日 01:15:24 2
二次型的秩怎么求(二次型的秩为2意味着什么)摘要: 本文目录一览:1、线性代数求二次型的秩2、...
󦘖

微信号

18322445027

添加微信

本文目录一览:

线性代数求二次型的秩

写出二次型矩阵为:

{1,-1,-1}

{-1,1,1}

{-1,1,3}

r2+r1,r3+r1,r3/2,交换r2r3,r1+r2。

{1,-1,0}

{0,0,1}

{0,0,0}

显然二次型的秩为2。

二次型化简的进一步研究涉及二次型或行列式的特征方程的概念。特征方程的概念隐含地出现在欧拉的著作中,拉格朗日在其关于线性微分方程组的著作中首先明确地给出了这个概念。

而三个变数的二次型的特征值的实性则是由阿歇特(j-r.p.hachette)、蒙日和泊松(s.d.poisson,1781~1840)建立的。

扩展资料:

向量组的秩:在一个m维线性空间E中,一个向量组的秩表示的是其生成的子空间的维度。考虑m× n矩阵,将A的秩定义为向量组F的秩。

则可以看到如此定义的A的秩就是矩阵 A的线性无关纵列的极大数目,即 A的列空间的维度(列空间是由 A的纵列生成的 F的子空间)。因为列秩和行秩是相等的,我们也可以定义 A的秩为 A的行空间的维度。

矩阵的秩性质:如果 B是秩 n的 n× k矩阵,则 AB有同 A一样的秩。如果 C是秩 m的 l× m矩阵,则 CA有同 A一样的秩。A的秩等于 r,当且仅当存在一个可逆 m× m矩阵 X和一个可逆的 n× n矩阵 Y使得 这里的 Ir指示 r× r单位矩阵。

证明可以通过高斯消去法构造性地给出。矩阵的秩加上矩阵的零化度等于矩阵的纵列数(这就是秩-零化度定理)。

参考资料来源:百度百科-秩

在线性代数中如何求秩

1.

求向量组的秩的方法:

将向量组按列向量构造矩阵(a1,...,as)

对此矩阵用初等行变换(列变换也可用)化为梯矩阵

非零行数即向量组的秩.

2.

求矩阵的秩

对矩阵实施初等行变换化为梯矩阵

非零行数即矩阵的秩.

3.

二次型的秩即二次型的矩阵的秩

二次型的秩

就是二次型对应矩阵的秩。等于二次型非0特征根的个数。

一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。

如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

当r(A)=n-2时,最高阶非零子式的阶数=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)=n-1时,最高阶非零子式的阶数=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

扩展资料:

n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。线性代数的重要内容之一,它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的研究。

柯西在别人著作的基础上,着手研究化简变数的二次型问题,并证明了特征方程在直角坐标系的任何变换下不变性。后来,他又证明了n个变数的两个二次型能用同一个线性变换同时化成平方和。

双线性形式B的核由正交于V的所有元素组成,而二次形式Q的核由B的核中的有Q(u)=0的所有元素u组成。 如果2是可逆的,则Q和它的相伴双线性形式B有同样的核。

双线性形式B被称为非奇异的,如果它的核是0;二次形式Q被称为非奇异的,如果它的核是0。

参考资料来源;百度百科——矩阵的秩

求二次型f=xT x的秩,怎么求

求二次型的秩二次型的秩怎么求,其实就是求其对应矩阵的秩,先写出矩阵(主对角线元素为二次型平方项,其余为交叉项)按照书上的化行阶梯型的办法就能求秩二次型的秩怎么求了。

打字不易,满意请采纳

阅读
分享